

Absolute Maximum Ratings（Note 2）				
Symbol	Parameter	Value	Conditions	Units
$\mathrm{V}_{\text {c }}$	Supply Voltage	-0.5 to＋4．6		V
V_{1}	DC Input Voltage	-0.5 to＋7．0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in 3－STATE	V
		-0.5 to＋7．0	Output in HIGH or LOW State（Note 3）	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	－50	$\mathrm{V}_{1}<$ GND	mA
TK	DC Output Diode Current	－50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
Io	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at LOW State	
ICC	DC Supply Current per Supply Pin	± 64		mA
TGND	DC Ground Current per Ground Pin	± 128		mA
TSTG	Storage Temperature	－65 to＋150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH－Level Output Current		-12	mA
I_{OL}	LOW－Level Output Current		12	
$\mathrm{~T}_{\mathrm{A}}$	Free－Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{C} / \Delta \mathrm{V}$	Input Edge Rate， $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 2：Absolute Maximum continuous ratings are those values beyond which damage to the device may occur．Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability．Functional operation under absolute maximum rated conditions is not implied．
Note 3： I_{O} Absolute Maximum Rating must be observed．

DC Electrical Characteristics

Symbol	Parameter	V_{CC} （V）	$\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ （Note 4）	Max		
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage	2.7			－1．2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2．7－3．6	2.0			V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	2．7－3．6			0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	2．7－3．6	$\mathrm{V}_{\mathrm{CC}}-0.2$			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		3.0	2.0			V	$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	2.7			0.2	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		3.0			0.8	V	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$
$\overline{I_{\text {（HOLD）}}}$ （Note 5）	Bushold Input Minimum Drive	3.0	75			$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$
			－75			$\mu \mathrm{A}$	$\mathrm{V}_{1}=2.0 \mathrm{~V}$
$I_{\text {（OD）}}$ （Note 5）	Bushold Input Over－Drive Current to Change State	3.0	500			$\mu \mathrm{A}$	（Note 6）
			－500			$\mu \mathrm{A}$	（Note 7）
I	Input Current	3.6			10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
	Data Pins	3.6			± 1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}
		3.6			－5	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
		3.6			1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
lofF	Power Off Leakage Current	0			± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\text {PU／PD }}$	Power up／down 3－STATE Output Current	0－1．5V			± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
IozL	3－STATE Output Leakage Current	3.6			－5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {OzH }}$	3－STATE Output Leakage Current	3.6			5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$
lozH^{+}	3－STATE Output Leakage Current	3.6			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\text {CCH }}$	Power Supply Current	3.6			0.19	mA	Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current	3.6			5	mA	Outputs LOW
$\mathrm{I}_{\mathrm{CCZ}}$	Power Supply Current	3.6			0.19	mA	Outputs Disabled

DC Electrical Characteristics (Continued)

Symbol	Parameter	v_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min		Max		
$\overline{\mathrm{ICCz}}{ }^{+}$	Power Supply Current	3.6			0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled
$\overline{\Delta l}_{\text {CC }}$	Increase in Power Supply Current (Note 8)	3.6			0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND
Note 4: All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 5: Applies to bushold versions only (74LVTH2240). Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 8: This is the increase in supply current for each, input that is at the specified voltage level rather than V_{CC} or GND. Dynamic Switching Characteristics (Note 9)							
Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	$\begin{gathered} \text { Conditions } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$
			Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 10)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	

Note 9: Characterized in SOIC package. Guaranteed parameter, but not tested.
Note 10: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$					Units
		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$		
		Min	Typ (Note 11)	Max	Min	Max	
$\overline{t_{\text {PLH }}}$ t_{PH}	Propagation Delay Data to Output	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 4.4 \end{aligned}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PZH}}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.6 \end{aligned}$	ns
$\begin{aligned} & \overline{t_{\mathrm{PHZ}}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.9 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosth	Output to Output Skew (Note 12)			1.0		1.0	ns

Note 11: All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 12: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Capacitance (Note 13)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	3	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	pF	

[^0]Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Note 13: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012

